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Introduction
Glacial drift comprises unconsolidated sediments that overlie bedrock. Drift 
thickness variations on this map (ranging from zero to more than 380 feet thick) 
reflect (1) numerous glacial advances and retreats across the region that depos-
ited glacial sediments; (2) subsequent deposition of postglacial sediments atop 
bedrock; (3) depositional and erosional processes of the ancient Mississippi River 
(AMR), the ancient Illinois River, and the modern Illinois River; and (4) the relief 
(i.e., hills and valleys) on the bedrock surface. Drift thickness is important for es-
timating the depth to bedrock for planned drilling, for predicting the distribution 
of shallow, economically significant rock resources, and as a guide for discovering 
new or underutilized buried sand and gravel deposits that are aquifers.

This map covers more than 500 square miles, including nine 1:24,000-scale U.S. 
Geological Survey (USGS) 7.5-minute quadrangles—Putnam, Florid, McNabb, 
Lacon, Henry, Varna, Rome, Chillicothe, and Washburn—and the southern half of 
three quadrangles—Princeton South, DePue, and Spring Valley. It revises smaller 
scale statewide drift thickness maps produced by Piskin and Bergstrom (1967, 
1975). More detailed mapping of the drift thickness in this region was an out-
growth of geologic mapping for a proposed highway improvement project along 
Illinois Route 29 funded by the Illinois Department of Transportation, on the west 
side of the Illinois River north of Chillicothe (Berg et al. 2002, 2003). This map 
is complemented by a bedrock topography map (Berg et al. 2009) and the eleva-
tion of basal sand and gravel map (Berg et al. 2012) of the same region  along the 
Middle Illinois River valley (MIV).

Methodology
Drift thickness was determined by subtracting bedrock elevations (see Berg et al. 
2009) from land surface elevations. Specifically, the vector bedrock topography 
contours were converted into a raster surface grid in Esri’s ArcMap, using the 
“Topo to Raster” tool. The surface model was compiled as a mosaic of nine USGS 
30-m digital elevation models. The resulting bedrock surface grid was then sub-
tracted from the land surface model using simple Raster Math, to obtain a grid of 
the drift thickness. Vector contour lines were created at 20-foot intervals, using 
the “Focal Statistics” and “Contour” tools in ArcMap, and subsequently were 
smoothed and edited in some areas to conform with borehole data. In addition, 
small non-data-supported polygons with a perimeter distance of <1,500 ft were 
deleted to reduce map complexity and margin of error. Although the “Grid Math” 
tool was administered on two data sets of similar resolutions (30-m-sized cells for 
both the bedrock elevation and land surface grids), the high degree of detail on the 
map is due to domination by the more detailed land surface elevation grid and the 
less detailed, smoothed, and further-spaced interpreted contours of the bedrock 
topography grid. As a result, the map indicates a higher degree of detail than is 
resolvable, and more testing is needed to verify calculated drift thickness values, 
particularly where the drift thickness lines appear closely spaced and jagged.

Bedrock is exposed at ground surface along the western valley wall of the MIV 
where glacial and postglacial sediments are absent. The bedrock elevation con-
tours for the Princeton Bedrock Valley (Figure 1), and areas where few wells 
penetrate to bedrock along the western portion of the map, were based largely on 
smaller scaled regional contours from Herzog et al. (1994). For the largest part of 
the map, drift thickness was confirmed by evaluating logs of borings and seismic 
profiling records. A total of 621 logs of water wells, engineering borings, and coal 
test borings, as well as 21 Illinois State Geological Survey (ISGS) exploratory 
borings, and numerous field-described outcrops were used to determine drift 
thickness. These data are on file in the ISGS Geologic Records Unit. A total of 
370 boreholes reached the bedrock surface. Many other borings ending in depos-
its above bedrock provided approximate drift thickness values, complementing 
nearby definitive drift thickness measurements. 

In the northeastern portion of the map, seismic reflection profiling by Murphey 
(2005) was conducted along 5.15 miles of roads. These data (Figure 1) were used 
to define the geometry of the Ticona Bedrock Valley and determine the thickness 
of its contained drift. Logs of nearby water wells were used as a basis for estimat-
ing seismic velocities of glaciofluvial deposits, which allowed conversion of travel 
times to estimate bedrock surface elevations. Ninety-six estimates of the bedrock 
surface (virtual boreholes), taken from the seismic data along the transect (stations 
about 300 feet apart), provide an interpreted depth to bedrock, and subsequently 
drift thickness values, to supplement well records in that area.

Drift Thickness and Character
Geologic mapping along the Middle Illinois River valley has provided sufficient 
new data to better characterize Wisconsin Episode and older sediments associated 
with glaciers that overrode the valley several times during the last several hundred 
thousand years. The AMR reoccupied the valley after each glacial retreat until 
the river was blocked and diverted (Figure 2) by a glacier to its present Missis-
sippi River course 24,770 ± 250 calendar years before present (McKay et al. 2008). 
Burial of the AMR valley by up to 330 feet of drift, the multiple subtle channels 
carved in the bedrock valley floor, and the up to 15-mile width of the bedrock val-
ley (Figure 2) reflect the complexity of erosion and sedimentation associated with 
these events. 

The study area has seven prominent thin and thick drift regions. Thin drift regions 
(Figure 1) include the following:

1. West of the Illinois River from just south of the Peoria/Marshall County line  
 northward to about 3.5 miles north of Sparland is a high bedrock surface with 
 numerous bedrock exposures along the west valley wall of the Illinois River  
 and its tributaries. Along the upper slope of the west valley wall and beneath  
 the adjacent uplands, recent mapping for this investigation revealed that where  
 the bedrock is within 50 feet of the surface, loam-textured Batestown Member 
 diamicton is <20 feet thick and it overlies loam-textured Tiskilwa Formation 
 diamicton (McKay et al. 2008). As the bedrock surface elevation decreases, 
  the thickness of the Tiskilwa increases.

2. In the present-day Illinois River valley and the tributaries to the east is a re- 
 gion where meltwater from multiple glaciers eroded the thick glacial deposits 
 and incised into the bedrock. Present-day sediments are mainly composed of  
 50 to 75 feet of alluvium over sand and gravel outwash in the main channel,  
 and 10 to 20 feet of sand and gravel in tributary valleys (McKay et al. 2007). 

3. On the bedrock uplands east of the AMR valley (Figure 2) is about 125 feet  
 of drift composed of about 50 feet of silty Yorkville Member and loamy 
 Batestown Member diamictons overlying up to 75 feet of loamy Tiskilwa  
 Formation diamicton.   

Thick drift regions (Figure 1) include the following:

4. Glacial sediments east of the present-day Illinois River and extending to the  
 eastern valley wall of the AMR contain about 25 feet of the Wisconsin Epi- 
 sode loamy Batestown diamicton overlying >100 feet of Tiskilwa diamicton.  
 This in turn overlies 50 to 75 feet (up to 125 feet) of mainly loamy Illinois Epi- 
 sode diamictons over 75 feet of sand and gravel (McKay et al. 2007). Also in  
 this thick drift area are high terraces along the Illinois River valley, often with  
 15 feet of dune sand overlying up to 150 feet of sand and gravel outwash.

 The stratigraphy of the thick glacial sediments above the eastern channel  
 suggest that this region contains the oldest sediments (fluvial quartz sand  
 below Wisconsin and Illinois Episode diamictons at a depth of about 330 feet  
 was dated by optically stimulated luminescence at 185,000 to 190,000 years)  
 preserved in the bedrock valley (McKay and Berg 2008). Other parts of the  
 bedrock surface appear to have been eroded more recently, explaining why  
 deposits older than the Illinois Episode have not been found (McKay et al.   
 2008). The raised landform of the Varna Moraine (Figure 3) extending south-  
 eastward from Hennepin to the Putnam/Marshall County line also contributes   
 to some of the thicker drift in this region. 

5. Glacial sediments within the Ticona Bedrock Valley (Figure 1) in the north- 
 eastern portion of the map are composed of about 150 feet of Wisconsin  
 Episode silty Yorkville diamicton and the loamy Batestown and Tiskilwa  
 diamictons, all overlying about 175 feet of sand and gravel (Murphey  
 et al. 2005).

 6. Recent investigations (McKay et al. 2008) show that thick glacial sediments  
 overlying the Princeton Bedrock Valley (Figure 1) in the northwestern portion  
 of the map are composed of about 30 feet of the Yorkville and Batestown  
 diamictons overlying about 100 feet of Tiskilwa diamicton, and all overlying  
 80 feet of Wisconsin Episode sand and gravel. The Princeton Bedrock Valley  
 was part of the AMR before its diversion westward to the modern valley of the  
 Mississippi River.

 7. Thick glacial sediment in the Wyoming Bedrock Valley in the southwestern  
 portion of the map is composed of 150 to 200 feet of undifferentiated Wiscon- 
 sin Episode diamicton, 50 to 75 feet of Illinois Episode diamicton, and 50 feet  
 of sand and gravel (Stumpf 2010). Outside the bedrock valley, the drift can   
 also be thick. On uplands, there can be as much as 200 feet of Wisconsin  
 Episode diamicton overlying up to 150 feet of Illinois Episode diamicton.  
 Terraces along the Illinois River valley in the southernmost portion of the  
 map also have >100 feet of sand and gravel containing up to 20 feet of dune  
 sand overlying outwash above the bedrock surface.
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Figure 3.  Moraines of the Middle Illinois River valley region
( the Middle Illinois River (MIV) floodplain is shown in gold).
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Figure 3  Moraines of the Middle Illinois River valley 
(MIV) region (major moraines are in shades of green for 
emphasis, and the MIV floodplain is shown in gold).
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Figure A. The pre-glacial course of the 
ancient Mississippi River �owed east from 
the modern quad-city area and ran across 
central Illinois between 130,000 and 25,000 
years before present (ybp). The map area 
is shown with a black outline in these 
time-sequence drawings . Modern county 
lines are in red for reference.

Figure E. Meltwater deposits (in purple ) 
left in the lowland between the Illinois 
and Mississippi valleys block the return of 
the Mississippi River to its ancient course. 
Subsequent meltwater �oods reopen the 
eastern portion of the valley, but this time 
exclusively for drainage from the Lake 
Michigan basin, and the modern valley 
of  the Illinois River is created.

Figure D. Eventually the rapidly expanding
lake over�ows to the west and cuts a new 
outlet channel. Lake Milan partially drains 
and the Mississippi River is totally diverted 
to the new channel. Following continued 
ice advance to the position of the 
Bloomington Morainic System (shown 
in Figure 3), the ice melts back. 

Figure C. Wisconsin Episode ice overrides
the valley about 24,770 ybp, which closes 
o� drainage to the south. Meltwater �oods 
into the main valley and its tributaries. 
Most of this water is dammed by the ice to 
the east and a large lake (Lake Milan) is 
created.  Sediments carried by the water 
are deposited in the lake.

Figure B. Wisconsin age ice approaches the
ancient Mississippi valley. The river widens 
across its �oodplain to accommodate the 
vast quantity of water �owing from the 
ice. Eventually the ice begins to cross the 
valley and constricts  the river’s �ow. Thick 
outwash sands and gravels are deposited 
along drainageways within the valley.
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ancient Mississippi

modern Mississippi

modern Illinoismodern Illinois River

modern Mississippi River

Figure 2e  After the glacial event ends and 
the ice melts, the materials deposited in the 
lowland block the return of the Mississippi 
River to its ancient course. Subsequent 
meltwater floods from the Lake Michigan 
basin reopen the eastern portion of the valley, 
but this time exclusively for drainage from the 
northeast. A new river, the Illinois River, now 
occupies the ancient valley.

Figure 2d  Eventually, the rapidly expanding
lake overflows to the west, cutting a new 
outlet channel. Lake Milan partially drains 
while lake and meltwater deposits (in purple) 
continue to be deposited in the lowland 
lake basin.

Figure 2c  Wisconsin Episode ice overrides
the valley about 24,770 years before present, 
which closes off drainage to the south. 
Meltwater floods into the main valley and its 
tributaries. Most of this water is dammed by 
the ice to the east, and a large lake (Lake 
Milan) is created. Sediments carried by the 
water are deposited in the lake. The ice  
   advanced to its terminal extent, forming  
      the Bloomington Morainic System  
 (shown in Figure 3).

ancient Mississippi River

ancient Mississippi River

Figure 2b  Wisconsin-age ice approaches 
the ancient Mississippi Valley. The river 
spreads across its floodplain to transport 
the vast quantity of water flowing from the 
ice. Eventually, the ice begins to cross 
the valley and constricts the river’s flow. 
Thick outwash sands and gravels are 
deposited along drainageways within the 
valley.

Figure 2a  The preglacial course of the 
ancient Mississippi River flowed east from 
the modern Quad Cities area and ran across 
central Illinois between 130,000 and 25,000 
years before present. The map area is
shown with a green outline in these time-
sequence drawings. Modern county lines 
are in red for reference.

Figure 2  A history of the diversion of the ancient Mississippi River from the Middle Illinois River valley.
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Figure 1  Thin and thick drift regions of the Middle Illinois River valley.
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