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QUATERNARY DEPOSITS
Unit

HUDSON EPISODE (~13,000 years before present (B.P.) to today)

Surface Mine 

Disturbed Ground

Peyton Formation

Cahokia Formation

 
Cahokia Formation

(clayey facies)

Cahokia Formation 
(silty facies)

Cahokia Formation
(sandy facies)

WISCONSIN EPISODE (~55,000–13,000 years B.P.)

Peoria and
Roxana Silts 

Henry Formation

Henry Formation-
(Parkland facies)

Henry Formation -
Henry Formation

(Parkland facies) complex

Equality Formation

ILLINOIS EPISODE  (~190,000 to 130,000 years B.P.)

Teneriffe Silt
(cross sections only)

Pearl Formation
(cross sections only)

Glasford formation

TERTIARY AND EARLY QUATERNARY

Oak formation
(cross sections only)

PRE-QUATERNARY DEPOSITS

PENNSYLVANIAN SUBSYSTEM (323 to 299 million years B.P.)

Pennsylvanian Bedrock

Description

Removed earth

Dug, mounded, and filled 
earth

Silt loam to loam, with local 
gravel; massive to weakly 
bedded; yellow brown; less than 
10 ft thick

Loam, silt loam, and silty clay 
loam; local basal sand or 
pebbly sand beds; fine portion 
typically massive, but locally 
laminated or thin bedded; 
graded upwards; brown to 
yellow-brown; typically leached; 
as much as 30 feet thick

Silty clay loam to silty clay, 
intercalated with minor loam; 
massive to weakly stratified; 
brown to olive brown to black; 
leached; less than 12 feet thick 
and more typically 5 ft thick

Silt loam to loose silt over 
loamy sediment to sand; 
massive, may include loamy 
interbeds; olive brown to gray 
brown; leached near surface; as 
much as 10 feet thick

Sand, loamy sand, and sandy 
loam; very fine to coarse; 
laminated to thick bedded to 
massive; fine gravel lenses; 
yellow brown to brown; leached 
near surface; typically 5 but as 
much as 25 feet thick

Silt loam to clay loam; upper 
unit massive with gradational 
contact, brown to yellow brown; 
lower unit sandier with granules, 
massive to crudely bedded, 
brown to reddish brown, 
leached; upper and lower units 
as much as 9 feet and 2 foot 
thick, respectively

Sand to sandy loam; fine to 
coarse; thin bedded to massive, 
silty and coarse gravel lenses; 
brown and light brown to gray; 
locally leached but typically 
calcareous; as much as 50 feet 
thick in Embarras Valley

Fine sand to loamy fine sand 
and silt loam; thin-bedded to 
massive, yellow brown to brown; 
upper portion leached, as much 
as 15 feet thick

Fine sand to silt loam and 
coarse sand; thin-bedded to 
massive, yellow brown to brown; 
upper portion leached, as much 
as 15 feet thick

Silty clay loam to clay, few silty 
and sandy interbeds; laminated 
to massive, fossiliferous zones 
with gastropod, mussel and 
ostracode tests, peaty horizons, 
generally calcareous; gray to 
gray brown to olive brown; as 
much as 90 feet thick

Silt loam to clay; laminated to 
massive; includes fine sand 
lenses 1-5 feet thick; olive brown 
to gray; as much as 30 feet thick

Sand, gravelly sand, and 
sandy gravel, silty interbeds; 
medium to poorly sorted; thin 
bedded; light brown to gray; 
leached to calcareous; as much 
as 30 feet thick

Sandy loam to clay loam 
diamicton; brown to gray;  
leached to calcareous; generally 
less than 10 feet thick, but may 
be thicker where uneroded in 
bedrock valley bottoms

Sand, loam, and loamy diam-
icton; gray to olive brown; 
common fragments of weath-
ered sedimentary rock; leached; 
less than 5 feet thick

Sandstone, shale, limestone, 
coal

Interpretation

Small aggregate pits exploited 
channel and outwash gravels, 
now filled with water 

Removed or reclaimed land, 
mapped south of Lawrenceville 
on abandonded Texaco/Indian 
Point site and in areas graded 
for industrial parks. Also shown 
in cross sections in bridge 
cones

Colluvium; thin units occur 
along many foot slopes and can 
interfinger with alluvial units; 
derived from loess and till-cov-
ered upland

Alluvium; Less than 10 feet 
thick in tributary stream valleys 
draining bedrock uplands; up to 
30 feet thick where mapped as 
undifferentiated alluvium in 
larger valleys; where lithology of 
underlying unit is similar, 
contact is gradational and 
recognized by buried paleosol

Backswamp, flooplain lake, 
and overbank deposits

Alluvium; single unit mapped in 
first-order tributary draining 
loessial upland. 

Channel, point bar, and levee 
deposits; mapped within 
Embarras River valley; forms 
terraces along valley walls and 
buried below other Cahokia Fm 
facies

Loess; mapped over all upland 
surfaces where more than 5 feet 
thick, intercalates with some of 
the valley fill; lower Roxana Silt 
is loess intermixed with colluvium

Outwash; comprises the 
surficial unit on terraces or where 
dissected by Hudson Episode 
alluviation, and is buried below 
Cahokia Fm in Embarras Valley; 
intercalates locally with Equality 
Fm; as valley-filling deposit, 
originally formed sediment dams 
blocking tributary valleys, where 
prograding delta facies intercalat-
ed with slackwater lacustrine 
facies; incision by late-glacial 
flood flows, left veneers of sheet 
sand on terraces and construct-
ed landforms; low terraces also 
reworked by post-glacial 
overbank flows in trunk valleys; 
local deposits along base of 
slopes in upper tributary valleys 
with slackwater fill

Eolian dunes; reworked from 
outwash deposits; occur on 
terraces and bedrock uplands 
near Embarrass and Wabash 
Valleys; landforms include 
parabolic and complex dunes 
formed by westerly winds; 
includes small areas of or 
intercalate with loess

Eolian dunes, fluvial dunes, 
and flood channels; terraces 
partly incised by late-glacial or 
early-Hudson Episode flooding; 
differentiation of eolian and fluvial 
dunes requires detailed lithologi-
cal and geomorphic study

Shallow to deep slackwater 
lake deposits from damming of 
tributary valleys by outwash of 
the Wabash Valley train; 
comprises extensive low-relief 
surficial units in tributary valleys; 
buried by Cahokia Formation or 
Henry Formation in river valley 
fills; inset into Teneriffe Silt in the 
subsurface; mixed with loess at 
surface; upper elevations as high 
as 440 ft asl in Indian Creek 
valley, but as high as 465 ft asl in 
Big Slough valley

Lacustrine sediment in 
slackwater valley fills; found only 
in boreholes below surficial unit 
or below Equality, Henry, or 
Cahokia Formations; recognized 
by remnants of eroded Sangam-
on Geosol developed in upper 
portion; upper elevations ~405 
feet asl

Outwash; found in core in 
tributary valley fills, upper 
portion may intercalate with 
Teneriffe Formation, lowermost 
portion lies above or intercalates 
with Glasford Formation or lies 
directly on bedock; may include 
remnants of eroded Sangamon 
Geosol in upper portion

Till; veneers bedrock hills below 
Peoria and Roxana Silt Forma-
tions, locally exposed in gullies 
and stream valley walls; mostly 
eroded from bedrock valleys 
and may intercalate with Pearl 
Formation where it was deposit-
ed as debris flow; truncated 
Sangamon Geosol may be 
developed in upper portion

Weathered bedrock and 
associated colluvium; isolated 
patches above bedrock

Sandstone and shale are most 
common outcrop and subcrop; 
mapped as the Oak Formation 
where deeply weathered
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Stratigraphic boring

Water-well boring

Engineering boring

Coal boring

Oil and gas boring

Outcrop

Passive seismic sounding

Labels indicate samples (S) or geophysical log (G). 
Boring labels indicate the county number.
Outcrop labels indicate geologist’s field number.
Dot indicates boring or outcrop is to bedrock.

Point Data Type

Note: The county number is a portion of the 12-digit API number 
on file at the ISGS Geological Records Unit. Most well and 
boring records are available online from the ISGS Web site.

Contact

Inferred contact

Terrace scarp

Dune crests

Glacial lineament

Line of cross section

Electrical resitivity profile line

Line Data Type
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Introduction
The Lawrenceville 7.5’ quadrangle includes the confluence of the Embar-
ras River with the Wabash Valley and the surrounding uplands, about 70 
river upstream from the mouth of the Wabash River. Both rivers occupy 
large bedrock channels cut by pre-glacial and glacial rivers. Two small 
streams drain the upland. Indian Creek flows west-east across a low relief 
plain to the Embarras River. Big Slough flows southward through an nar-
row bedrock channel that was abandoned by the Embarras River. Law-
renceville is the County Seat. The Lawrenceville-Vincennes International 
Airport is 3 miles north of Lawrenceville, and the regional Mount Carmel 
Airport is 2 miles south of the quadrangle. The main economic activi-
ties are health care and manufacturing, but the landscape is dominated by 
agriculture and petroleum production activities. A large Superfund site in 
southern Lawrenceville occupies upland and Embarrass River floodplain. 
This surficial geologic map is part of a long term surficial geologic map-
ping project (Phillips 2017; Phillips 2016; Phillips et al. 2014; Phillips 
et al. 2013; Phillips and Gemperline 2012; Bryk et al. 2012) in the lower 
Wabash River valley region that includes the Illinois-Indiana border. The 
map adjoins Vincennes Quadrangle, one of the 3D mapping pilot projects 
that became the Great Lakes Geological Mapping Coalition. The Quater-
nary geology depicted here represents preliminary results and interpreta-
tion from this mapping effort. The map builds upon the existing geologic 
framework and supports studies of water and aggregate resources, seismic 
hazard, glacial processes, river processes, and geologic history.

Methods
The surficial geology was analyzed from compilations of boring records 
archived at the Illinois State Geological Survey (ISGS), unpublished 
geologic field notes from the ISGS, aerial imagery, and USDA soil sur-
veys (Soil Survey Staff 2018). One hundred eighty nine new geotechni-
cal borings from the Illinois Department of Transportation were added to 
the ISGS enterprise database. Locations of the water well (n = 148) and 
geotechnical borings (n = 83) shown on the surficial map were confirmed 
with the best available data. The geotechnical boring locations are within 
1–50 ft of their true locations, whereas the accuracy of most water well 
locations ranges from 10 to 330 ft. Some of the petroleum wells (n = 10 
on surficial map) have sample sets that include Quaternary sediments, 
and their locations were assumed reasonably accurate. New data were 
generated by study of 28 sample sets in the ISGS Samples Library, a cor-
ing program, electrical resistivity tomography (ERT) surveys, bedrock 
sounding using passive seismicity, interpretation of recent high-resolution 
elevation data (Illinois Height Modernization Program 2002-2019), and 22 
outcrop descriptions. Coring with hydraulic push methods to depths of 9 to 
44 feet totaling 513 ft at 20 sites targeted valley fills, terrace assemblages, 
and loess thickness. Four sites were explored for geotechnical properties 
by cone penetrometer and hydraulic profiling (CPT-HPT). Data collected 
on core samples included particle size analyses by laser diffraction and 
hydrometer (n = 75), elemental and clay mineral analysis by Energy Dis-
persive X-Ray Fluorescence, and X-Ray Diffraction (n = 35), and water 
content (n = 40). Ages of 3 samples were obtained by optically stimulated 
luminescence. Three ERT transects totaling 3 miles in length imaged the 
upper 200 m of the subsurface.

The bedrock topography map (Fig. 1) was constructed by machine con-
touring of point observations and contour interpretations with the Topo 
to Raster tool in ArcGIS. In addition to the 242 point data shown, and 
another 63 points within a mile-wide buffer surround the map area were 
included. Further, because of low data density relative to relief, overall 
thin sediment thickness, and common outcrop areas, additional synthetic 
contour data of the bedrock surface elevation were created according to 
inferred geologic interpretations. The bedrock topography map was con-
structed from these data as a 30 m raster grid. The unconsolidated sedi-
ment thickness map (Fig. 2) was constructed by the same data, but using 
thickness instead of elevation. Contours derived from the resulting raster 
were further generalized and smoothed to account for the low density of 
the primary point data. 

Geologic Setting
The Embarras Valley was tributary to the Wabash Valley throughout the 
Quaternary Period. Faulting and downwarping within the Wabash Val-
ley Fault System (Bristol and Treworgy 1979; Woolery 2005; Hermann 
et al. 2008) were likely conducive to formation of the Wabash Valley. 
Ancient seismicity is evident from mapping of liquefaction dikes (Hajic 
et al. 1995; Munson and Munson 1996) and ongoing seismicity includes 
the M5.4 Mount Carmel Earthquake, the largest-ever recorded event in 
Illinois, about 30 miles south of the Lawrenceville (Hermann et al. 2008). 
Southeastward-flowing ice during the Illinois Episode glaciation, ~160-
130 ka, advanced over the area to reach its terminal moraine on highlands 
in Indiana, ~25 mi to the SE (Grimley et al. 2017; Gray 1988). The iceflow 
is evident in strong NW-SW glacial lineation across the landscape. As 
shown on the map, during deglaciation, the Embarras Valleys and the larg-
er Wabash Valley were major meltwater outlets of different lobes of the 
ice sheet. Outwash deposition filled the valleys and thus dammed tributary 
valleys to form slackwater lakes. Erosion during the ensuing Sangamon 
Episode interglacial, ~130–60 ka, removed much of the sediment from the 
uplands and valleys to expose bedrock. During the Wisconsin Episode, ice 
of the Huron-Erie lobe first entered the drainage basin ~50 ka. It reached 
its maximum extent about 60 miles N of Lawrenceville at ~22 ka, and 
finally retreated from the drainage basin ~13 ka (Dyke 2004; Curry et al 
2011). During the deglaciation, aggrading outwash again dammed tributar-
ies valleys to form slackwater lakes that reached nearly the same surface 
elevations as during the Illinois Episode. Dry and windy climate towards 
the end of the Wisconsin Episode was conducive to the generation of loess 
and dunes from extensive unvegetated outwash plains; the thickest depos-
its accumulated on the eastern side of the Wabash Valley, but a thin blanket 
of loess covers uplands and intermingles with alluvial deposits, and exten-
sive dunes occur on outwash terraces. Huge floods cascaded episodically 
down the Wabash Valley during the glacial-interglacial transition when 
proglacial lakes burst their dams (Fraser 1993; Curry et al. 2014). The 
floods eroded much of the fill in the Wabash Valley, but bedrock knobs 
protected some of the deposits. Extensive outwash plains near Lawrencev-
ille were deposited during the wane of the last flood, the Maumee Torrent 
(Bleuer and Moore 1971). The flood flows left scarps along the border of 
upper slackwater lake deposits in the lower Embarras Valley and depos-
ited a veneer of fluvial sand on top. The rivers developed into meandering 
systems during the Hudson Episode postglacial, ~13 ka–present. Repeated 
episodes of valley fill incision followed by reaggradation resulted overlap-
ping deposits that can be difficult to differentiate (Autin 1996).  

Key Findings
Landscape-sediment Assemblages
Landscape-sediment assemblages relate the origin and composition of the 
landforms. Four main landscape-sediment assemblages were differenti-
ated within the quadrangle. (1) Bedrock-controlled uplands dominate the 
west half of the quadrangle. The uplands are covered by thin to thicker 
loess over a veneer of till. The bedrock was exposed by erosion in steeper 
gullys and along much of the Wabash Valley wall. Incised river valleys 
include the Embarras Valley at Lawrenceville and the lowermost reach of 
the Big Slough valley. (2) Broad, flat plains between bedrock uplands are 
slackwater lacustrine sediment deposits, especially Indian Creek upper 
Big Slough. The slackwater deposits include alluvial and nearshore sedi-
ment along the margins. (3) Outwash terraces dominate the eastern por-
tion of the quadrangle. Late-glacial meltwater flows eroded outwash and 
slackwater sediments to creating eastward-facing scarps. Sandy ridges 
topping slackwater terrace edges are interpreted as levee deposits that 
spilled into the shallow lakes that still occupied the slackwater basins. The 
sandy deposits are partly reworked into eolian dunes, which also occur 
on the upland east of Lawrenceville and on the north portion of the high 
terrace between the Embarras River and England Ditch. The age of the 
dune at LVL-P12 is ~15 ka. Previous mapping also dated dunes as old as 
22 ka (Phillips and Gemperline 2012; Phillips et al. 2013; Phillips 2016). 
Terraces at about 430 elevation were partially reworked by latest glacial 

flooding. Terraces at about 420 elevation may represent the channel bed 
of those flows. (4) Active floodplain and channels of the Embarras River 
include several small terraces and meander cutoffs. Although the Embarras 
is largely controlled over this reach, it is not leveed above the Wabash Val-
ley, so flood flows still advance over the floodplain. Some of the crevasse 
splay and scroll bar morphology is subdued by a veneer of fine overbank 
sediment in swales. Fine-textured alluvium in smaller tributaries is re-
worked from older deposits with varied texture

Bedrock Uplands and Buried Valleys
Bedrock, mostly Pennsylvanian sandstone, supports the ridged uplands. 
Bedrock valleys underlie the Indian Creek and Big Slough terrace and Wa-
bash Valley, but are not coincident with modern stream valleys channels. 
The tributary valleys were incised before the Illinois Episode.  

Bedrock uplands are covered by an 8-10 foot thick blanket of loess, 
mainly Wisconsin Episode Peoria Silt, over a thin veneer of till of the Il-
linois Episode Glasford Formation. The till was evidently eroded off the 
hilltops during the Sangamon Episode, but thin beds were encountered in 
more sheltered settings. Bedrock, mostly sandstone, is exposed along steep 
slopes across the quadrangle, and is deeply weathered.

There is regionally strong lineation of ridges trending SSE (Fig. 1; also see 
Grimley et al. 2017). The lineation includes overall upland valley orienta-
tions, narrow ridges on bedrock-supported uplands, and also landforms of 
unlithified sediment. The SSE orientation parallels the flowpath of the Illi-
nois Episode glaciation, and extends across the Wabash Valley towards the 
Illinois Episode terminal moraine in Indiana. Although previous research-
ers had mapped alignment of some ridges (D. McKay, unpublished GIS 
data), the extent of the lineation could not have been appreciated before 
the availability of regional lidar elevation data in 2011. The generally 
weak, uniform shale, sandstone, and coal bedrock with shallow dip pro-
vides little obvious structural control. The lineaments were likely caused 
by glacial erosion. However, landforms of unlithified sediment are also 
part of the lineation. These could not be explored in this mapping project, 
so how the landforms could persist through Sangamon Age erosion is un-
certain. Imaging of lineaments by ERT by Phillips (2016) showed similar 
sculpting of bedrock in one ridge, but of unlithified sediment in another. 

Illinois Episode Units
The Glasford Formation was mostly eroded off this area. It occurs as only 
a relatively thin unit, typically <10 ft thick, over the uplands (western 
cross section B-B9), and was largely removed from the lowlands. In map-
ping of the Wabash Valley to the south, most occurrences of the Glasford 
Formation were gray and loamy diamicton where unweathered (Phillips 
and Gemperline, 2012; Phillips 2016). Borehole LVL-P13 (cross section 
A-A9), by contrast, may have penetrated two facies. There, 15 ft of gray, 
loam-clay loam diamicton overlies at least 15 ft of of chocolate brown silt 
loam diamicton with common wood inclusions and lenses of silt loam. 
At the boundary between the two are sandy and silty zones. The wood 
in the lower facies along with inclusions of clast-free fine sediment may 
reflect incorporation of proglacial lacustrine or alluvial deposits. However, 
preliminary clay mineralogy results show the upper unit to be higher in il-
lite (61% >45%) and more carbonate rich with more dolomite than calcite 
(1.45:1 vs. 1:1). Grimley et al. (2018) described similar differentiation of 
the Vandalia and Smithboro facies of the Glasford Formation. 

Fine grained sediment of the Illinois Episode above the Glasford Forma-
tion is included in the Teneriffe Silt. Although originally conceived as a 
loessial unit (Willman and Frye 1970, although mapping practice since 
Hansel and Johnson 1996 has been to classify solely by lithologic and not 
genetic criteria), the Teneriffe Silt includes slackwater lake and alluvial 
facies. It was encountered in 4 probes along cross section B-B9, attesting 
to original widespread occurrence. Base level control by the Wabash Val-
ley is evident because a thick sequence of Teneriffe Silt extends through 
the subsurface to where it was scarped in the Wabash. Late-glacial flood 

flows eroded down to the Teneriffe surface in the Embarras/Big Slough 
valley. Similar distribution and landforms were mapped in the next drain-
age downstream by Phillips (2017). Only thin units of the Pearl Formation 
were encountered in probes or interpreted from logs. Sand and gravel of 
the Pearl Formation would have been the sediment dam in the Wabash 
Valley that supported the slackwater lakes. In the eastern portion of B-B9, 
the Pearl Formation lies on more fine-grained sediment as interpreted from 
logs. That unit is interpreted as a tongue of the Teneriffe Formation, indi-
cating an episode of incision and re-forming of slackwater conditions.

Slackwater Terraces
The Wabash Valley was a meltwater outlet for several glacial episodes. 
During each episode, outwash filled the main valley to dam tributary 
valleys and form slackwater or proglacial lakes, which in turn filled with 
lacustrine sediment (Heinrich 1982; Fraser 1993). The drainage basins of 
many of the tributary valleys were quite small. The accumulating sediment 
may have been directly deposited as loess or in flooding events from the 
trunk valleys. Horizons with weak soil development and concentrations 
of plant matter are evidence of episodic drainage. Colluvial and alluvial 
sediment was deposited along lake margins. The sequence depicted in cross 
section A-A’ is interpreted as several episodes of slackwater lake filling and 
incision over the Illinois and Wisconsin Episode. Similar sequences were 
found tributary bedrock valleys to the south (Phillips 2016; Phillips 2017). 

The Indian Creek valley fill was explored by coring and EER profiling 
(cross Section A-A9). Two major episodes of slackwater lake sedimenta-
tion were encountered. Ice covered the valley during part of the Illinois 
Episode. The Henry Formation shown west of the Wabash bedrock valley 
includes both slackwater lake – forming deposits as the sand prograded up 
the tributary valleys, as well as deposits left from the highest flood flows 
in the Wabash Valley during deglaciation (the Maumee event was ~15 ka).

Embarras Valley
The northern portion of the quadrangle includes only the southern margin 
of the Embarras Valley on the north. The lowermost reach is restricted to 
a narrow bedrock valley. Bedrock is near-surface and exposed along the 
several reaches of the valley walls. The configuration of the valley was 
likely condition by base level control in the Wabash Valley. At one time 
the Embarras coursed through the even narrower bedrock valley west of 
Billet, now the course of Big Slough, but the timing is not known. Bed-
rock elevations >400 ft are higher than the Sangamon Geosol developed 
in Teneriffe Silt encountered just upstream (cross section B-B9), indicating 
that the valley is more recent than the Illinois Episode.

Economic and Groundwater Resources
Abandoned sand and gravel pits dot the floodplain. The nearest active 
aggregate operation is just north of the quadrangle. Sands of the Henry 
Formation are accessible, but no extensive near-surface gravel deposits 
were encountered within the quadrangle. That the Embarras and Wabash 
valley fills provide abundant water is evident by the many municipal wells 
of Lawrenceville and nearby towns. No significant potential Quaternary 
aquifer units were found in tributary valley fills. Thicker aquifer materials 
occur in the Wabash Valley east of the quadrangle.

Seismic Hazard
Four sites were characterized with a cone penetrometer and hydraulic pro-
filing system (CPT-HPT). This system collects the standard geotechnical 
data gathered by a CPTu system and with the addition of a constant rate 
fluid injection system (HPT), a relative measure of permeability is also 
determined. At these sites, twelve CPT soil behavior types were identified 
that correlate to clay to gravel textural classes (Robertson et al. 1986; Rob-
ertson and Campanella 1985). The soil behavior type index, Ic, is utilized 
as a simplified CPT-based liquefaction triggering criterion: Ic < 2.4 are 
potentially liquefiable, and Ic between 2.4 and 2.6 are potentially liquefi-
able and require soil testing as defined by Youd et al. 2001. The Robertson 
and Wride (1988) definition of Ic was applied and is defined in terms of 

two normalized dimensionless cone parameters, Q and F, derived from tip 
and sleeve friction measurements, respectively. Potential for liquefaction 
was found near LVL-P13 (32855) on the Embarras River floodplain (Fig. 
3). There, 16 ft of fine-grained floodplain deposits of the Cahokia Forma-
tion overlie 13 ft of interbedded fine to coarse sand and silty clay loam, 
channel deposits. Those, in turn, overlie at least 10 ft of more fine-textured 
deposits, possibly Equality or Teneriffe Formation. Bedrock was sounded 
by passive seismic measurements at about 80 ft depth. Most of the sand 
package had Ic values below 2.6 and thus possible susceptible to liquefac-
tion. Additional geotechnical studies need to be completed to assess the 
actual hazard of liquefaction.
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Figure 1 Bedrock Topography. This map was digitally modeled 
from well log data, sample set studies, outcrop studies, geo-
physical measurements, and judgement. Some contours were 
smoothed manually. Map scale is 1:100,000.

Figure 2 Unconsolidated Sediment Thickness. This map 
was digitally modeled from well log data, sample set stud-
ies, outcrop studies, geophysical measurements, and judge-
ment. Some contours were smoothed manually. Map scale is 
1:100,000.

Figure 3 Results from probing and CPT-HPT characterization at the site of LVL-P16 (API # 32855) on the Embar-
ras River floodplain. Qt = normalized dimensionless tip friction; Fr = normalized dimensionless sleeve friction; Ic = 
soil behavior type index.
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