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Interpretation

Man-made materials in 
interstate interchanges, landfills, 
sand and gravel pits, borrow pits, 
and Native American earthen 
mounds

Abandoned channel fill, swale 
fill,  and backswamp alluvium; 
deposited in floodplain of 
Mississippi River; interfingers 
with sandy facies of Cahokia 
Formation

Point bar and channel alluvium 
of the Mississippi River; 
interfingers with clayey facies of 
Cahokia Formation

Glacial outwash of the 
Mississippi River; buried by 
postglacial Cahokia alluvium

Loess; including some slope 
deposits and redeposited loess; 
upper portion is Peoria Silt (tan to 
gray); lower portion is Roxana Silt 
(pink to tan-gray with higher clay 
content); mapped in Missouri on 
cross-sections

Till and ice marginal sediment; 
upper portions may contain lower 
horizons of Sangamon Geosol;  
mapped in Missouri on 
cross-sections

 
Description

Fill or removed earth; sediment 
of various types

Silty clay loam, silty clay, and 
silt with occasional fine sand 
lenses; gray to brown, some thin 
red layers, massive to well 
stratified; soft to stiff

Very fine, fine, and medium 
sand, with some coarse sand 
and gravel and some silt and clay 
layers; light brown to gray, 
stratified, loose to soft

Medium to coarse sand with 
gravel and some fine sand; fine 
sand where exposed near 
surface; light brown to gray to 
pinkish-brown, stratified, various 
pebble compositions

Silt to silt loam; yellow-brown to 
gray to pinkish-brown, massive 
with some dark organic layers, 
friable, mainly dolomitic, 
terrestrial gastropods common; 
contains modern soil solum in 
upper 2 to 4 feet, carbonate 
nodules common

Pebbly silt loam to loam 
diamicton with sand and silt 
lenses; olive to gray, weathered 
brown in upper portion; typically 
massive, dense, and weathered 

QUATERNARY DEPOSITS

Unit

HUDSON EPISODE (~12,000 years before present (B. P.) to today)

Disturbed ground

Cahokia Formation,
(clayey Mississippi Valley facies)

Cahokia Formation, 
(sandy Mississippi Valley facies)

WISCONSIN EPISODE (~75,000 years–12,000 B.P.)

Henry Formation
(cross sections only)

Peoria and Roxana Silts
(cross sections only)

ILLINOIS EPISODE (~200,000 years–130,000 B.P.)

Glasford Formation
(cross sections only)
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"k
SG 29900
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"e
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Stratigraphic boring

Water boring

Engineering boring

Labels indicate samples (S) or geophysical log (G). 
Numeric labels indicate the county number.
Outcrop labels indicate geologist’s field number.
Dot indicates boring is to bedrock.

Contact

Inferred contact

Line of cross section

Data Type

Note: The county number is a portion of the 12-digit API number 
on file at the ISGS Geological Records Unit. Online well and 
boring records are available at the ISGS Web site.
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Figure 1  Physiographic map of a portion of the American Bottoms near East St. Louis, Illinois showing some named 
features. High elevations (uplands) are in tan, low elevations are in lavender to blue. Alluvial fans emanating from tributary 
valleys coalesce over valley fill deposits along the eastern bluff line. Four physiographic regions within the main valley reflect 
deposition and erosion from the evolving Mississippi River (see Table 1). Remnant late Wisconsin Episode glacial outwash 
exists east of the red dashed line. The Mississippi evolved from a braided outwash to a meandering system about 10,000 
years ago. It then flowed only in the region west of the red line, eroding deeply into the pre-existing glacial deposits. The low 
featureless terrace is an erosional remnant of the glacial sediments although buried by post-glacial overbank sediments. High 
sinuosity meandering left prominent channel scars and point bar deposits over the central portion of the American Bottoms. 
The river evolved from high-sinuosity to low-sinuosity meandering by about 2400 years ago, after which it has only occupied 
the region west of the “sinuosity line”. Base is a shaded relief map constructed from 6 tiled USGS 7.5 minute quadrangle digi-
tal elevation models with 10 m resolution. The Granite City quadrangle is indicated by the black box. Scale ~ 1:100,000.  

Table 1  Approximate age of geomorphic features

Landform

Date of Formation or 
Abandonment  

(radiocarbon years before 
present)

Surface Environment Reference

Wood River Terrace 12,000–10,000 outwash, dunes Hajic 1993; Flock 1983

“Featureless” low 
terrace

9,800–2400 erosional terrace, overbank Hajic 1993

High sinuosity 
meander belt

McDonough Lake 10,600–9,800 abandoned channel Rissing 1991

Prairie Lake 5500 abandoned channel White et al. 1984

Edelhart Lake Phase I: 5,500–4,500  
Phase II: 4,500–3,600

abandoned channel Rissing 1991

Grand Marais 3280–3090 abandoned channel Phillips and Gladfelter 1983

Goose Lake 3180–3150 active channel Gladfelter 1979

2500–2300 abandoned channel White et al. 1984

Hill Lake 3500–3100 abandoned channel White et al.1984

Horseshoe Lake 2400 (abandoned) lake, point bar Gladfelter 1981; Hajic 1993, 1998; 
Booth and Koldehoff 1999

Low sinuosity 
meander belt

2,400–present channel, levee, crevasse splay Gladfelter, 1981; Hajic 1998; Booth 
and Koldehoff 1999
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Surficial deposits

The Granite City Quadrangle contains the modern Mississippi River, and adjacent 
portions of southwestern Illinois and St. Louis, Missouri. The mapped area in Illinois 
comprises a portion of the American Bottoms, a large alluvial valley of the Mississippi 
River, with up to 125 feet of waterlain clay, silt, sand, and gravel above bedrock. They are 
distributed in complex relationships caused by erosion of old glacial valley fill and migra-
tion and abandonment of more recent channels of the Mississippi. Bedrock is level to 
gently sloping underneath the American Bottoms, but rises rapidly adjacent to the present 
course of the Mississippi and ultimately crops out in St. Louis as well as in the river bed 
upstream of the quadrangle.

Upland Areas
Although mapping focused on the Illinois portion of Granite City quadrangle, uplands in 
Missouri are shown in cross-section C–C9 and are based upon Goodfield (1965) and our 
observations from the area (Grimley et al. 2001). 

Illinois Episode deposits 
A thin layer, less than 5 feet thick, of silt loam to loam diamicton (Glasford Formation) 
interpreted as till overlies bedrock (cross-section C–C9). It is lithologically variable, 
from highly weathered to slightly weathered, and may contain inclusions of pre-existing 
local sediments  (Goodfield 1965, Grimley et al. 2001). Pebble to cobble clasts include 
metamorphic and igneous lithologies, and chert. The till was deposited when glacial ice 
advanced from Illinois over the ancestral Mississippi valley. The upper few feet of the 
deposit contains the soil weathering profile of the Sangamon Geosol and may include thin 
weathered silt deposited as loess during retreat of the Illinois Episode glaciers.

Wisconsin Episode deposits	
Windblown silt (loess), up to 75 feet thick, blankets older deposits in upland areas. The 
loess deposits were correlated by Goodfield (1965) to the thick loess sequences on the 
eastern bluffs of the American Bottoms, which have been the focus of much research 
because of the fairly continuous record of past climates and events they can potentially 
reveal (Willman and Frye 1970, McKay 1977, Wang et al. 2000). The loess was derived 
from windswept outwash here in the Mississippi Valley and, to a lesser degree, the Mis-
souri Valley. Loess deposits consist of the Peoria and Roxana Silts. The older Roxana 
Silt in Illinois is distinctively pinkish-brown in comparison to the yellow-brown Peoria 
Silt, but Goodfield (1965) found the color difference not always expressed in the field. 
The Roxana Silt is generally thinner and has slightly more sand, coarse silt, and clay than 
the Peoria Silt (McKay 1977). The Roxana Silt was deposited between about 55,000 and 
28,000 radiocarbon years before present (RCYBP) and the Peoria Silt between about 
25,000 and 12,000 RCYBP (McKay 1977, Grimley et al. 1998, Wang et al. 2000). Dark 
organic bands within the Peoria Silt represent warmer interstadial periods of soil forma-
tion (Wang et al. 2000). Both loess units contain large terrestrial gastropods locally.

American Bottoms
Filling and excavation of the Mississippi valley by meltwater events are likely to have 
occurred several times during the Quaternary Period. River sediment associated with 
pre-Wisconsin glaciations presumably filled the valley at one time but much of the valley 
was apparently eroded to bedrock at the onset of the Wisconsin Episode (Curry et al. 
2001). During Wisconsin Episode glaciation of the Upper Midwest the valley was filled 
with outwash deposited from braided streams to an elevation of at least 480 ft above sea 
level as indicated by the maximum elevation of terraces and buried lacustrine deposits in 
tributaries in the area (Bergstrom and Walker 1956, Curry et al. 2001, Flock 1983, Grim-
ley and Lepley 2004, Hajic 1998, Ollendorf 1993, Phillips 2004). Following the retreat of 
continental glaciers from the Midwest, the Mississippi River evolved from a braided to a 
meandering system at about 10,000 RCYBP (Hajic 1993, Blum et al. 2000). The mean-
dering Mississippi River migrated across the central and western portions of the valley to 
its present location, depositing river sand, silt and clay unconformably on top of glacial 
sediments. 

The major geomorphic features on the Granite City quadrangle are the abandoned mean-
der belts (fig. 1). High-sinuosity meandering between about 8500 and 2400 RCYBP left 
prominent meander scars and related point bar, levee and backswamp features over a large 
portion of the Bottoms (fig. 1, table 1). At about 2400 RCYBP, the system evolved further 
from a high- to a low-sinuosity meandering regime (Booth and Koldehoff 1999, Hajic 
1993) and has since occupied the western portion of the American Bottoms (gray dashed 
line in fig. 1). The low sinuosity meander belt is a few feet lower than the high sinuosity 
belt, possibly attesting to incision rather than aggradation during its construction. Even 
more recently the channel has been essentially straight. However, floodwaters periodically 
deposited fine sediment across much of the Bottoms prior to construction of levees in the 
past century.

The deposits that occur in the Mississippi Valley are mainly a mixture of waterlain clay, 
silt, sand, and gravel. Deposits are highly variable in the upper 50 feet because of the 
presence of the many former channels of the Mississippi River. There is a general coars-
ening trend with depth (see cross-sections), with sand and gravel outwash comprising the 
lower one-third to one-half of the sediment volume.

Glacial outwash  
A medium to coarse sand with some fine sand and gravel (Henry Formation), interpreted 
as glacial outwash, is the oldest deposit still preserved in the valley in the Granite City 
quadrangle and lies unconformably on bedrock. The upper portion has been eroded and 
the unit is buried by post-glacial alluvium. The Henry Formation is thickest, about 60 
feet, where bedrock is deeply incised near St. Louis (cross-section C–C9), but thins to 
the west and east as the bedrock surface rises (cross-section A–A9). It may contain some 
large erratic pebbles, cobbles, and boulders, particularly in the lower 15 feet. Within 
this quadrangle, Henry Formation is predominantly coarse to medium sand, but it fines 
eastward and upwards (Grimley et al., in preparation). Its deposition is related to glacial 
advances in the upper Midwest that did not reach the study area but caused aggradation 
in the Mississippi and Missouri Valleys. Occasionally, a reddish colored sand or gravel is 
noted in water wells or engineering borings at 90 to 100 foot depth which may represent 
the middle Wisconsin Episode outwash associated with Roxana Silt deposition. The upper 
boundary of Henry Formation is difficult to map because both texture and lithology grade 
gradually into the overlying post-glacial sediment.

Postglacial deposits  
Postglacial deposits mapped in the American Bottoms comprise fine to medium sand 
(Cahokia Formation – sandy Mississippi Valley facies), silt to silty clay (Cahokia Forma-
tion – clayey Mississippi Valley facies), and disturbed ground. Sandy and clayey deposits 
near surface generally coincide with subtle changes in topography (compare surficial map 
to fig. 1) associated with the meander belts that comprise the major geomorphic features 
of the quadrangle. Topographic expression has been subdued because of vertical accretion 

of flood sediments in low areas of the meander scars. Surficial sediment distributions are 
often reflective of material to a depth of 10 to 60 feet (see cross-sections). 

We concur with previous studies of the valley sediments (Bergstrom and Walker 1956, 
Willman and Frye 1970, Smith and Smith 1984) that sand-rich sediments (Cahokia 
Formation - sandy valley facies) are mainly postglacial channel and point bar sediments. 
These sands are predominantly fine to medium and are typically 25 to 50 feet thick. 
Fining-upwards sequences observed in detailed core descriptions of a Horseshoe Lake 
point bar at Horseshoe Lake State Park record the migration of river environments from 
channel sands through overbank fines. Lenses of fines within Cahokia sand may repre-
sent small backswamp lakes (cross-section B–B9). In the cross-sections, the boundary 
between Cahokia and Henry sand was estimated where the sand coarsens or at the base 
of abandoned meander clay plugs. In some water well logs and sample sets, clay layers 
were found to occur at about the base of the Cahokia Formation. In other cases, however, 
textural distinction between postglacial and glacial sand was not obvious from water well 
or engineering logs.

Clay and silt-rich sediments (Cahokia Formation, clayey Mississippi Valley facies) are 
interpreted as floodplain, backswamp, or abandoned channel deposits. Many oxbow lakes 
and abandoned meanders are clearly visible as present-day lakes or as patterns of surfi-
cial clay on the surficial geology map and on the shaded relief map (fig. 1). Abandoned 
channels in the high-sinuosity meander belt, most prominently Spring Lake, Edelhardt 
and Horseshoe Lake meanders (fig. 1), contain some of the thickest and finest Cahokia 
clay, as much as 40 feet thick. Because of their high sinuosity and low sand content of 
the fill, these abandoned meanders are interpreted to have formed by “neck cutoff ” in 
which the river meandered so strongly that it completely curved back upon itself. During 
flood stages, a new shorter channel was ultimately cut at the neck and the former path 
was abandoned and left behind as an “oxbow” lake. Since abandonment, these deep lakes 
were filled in with thick deposits of silt and clay. Only Horseshoe Lake remains a lake 
today, whereas former lakes in the Edelhardt, Spring Lake and other meanders have been 
completed filled with fine-grained sediment.

In the subsurface, sandy and clayey facies of the Cahokia Formation commonly inter-
calate in swale fills and abandoned channels (cross-sections A–A9, D–D9). Slumping of 
relatively fine-grained channel walls onto coarser channel bars when channels were active 
caused some interfingering. During floods, fine to medium sand was generally deposited 
adjacent to channels to form ridges, and silt and clay were deposited farther from the 
channel in backswamp environments. After abandonment, the coarser overbank deposits 
overlapped and were later covered by finer overbank and lacustrine sediments of the chan-
nel fill. In particular, the boundary between the two channel belts (fig. 1) is a complex of 
sandy levee and crevasse splay deposits from the younger low sinuosity channels interfin-
gering with silts and silty clays of fill of the abandoned high-sinuosity channels. Post-dep-
ositional erosion of sandy ridges into former channels and/or reoccupation of channels by 
the river may also have caused some of the interspersal of sediment.

Radiocarbon ages and superposition relationships among the former channels indicate 
they were abandoned between about 6000 and 2400 RCYBP (fig. 1, table 1). The Horse-
shoe Lake meander, the youngest high sinuosity meander on this quadrangle, was active 
from before about 4400 to about 2400 RCYBP (Gladfelter 1981, Hajic 1998). The basis 
for these estimates was a radiocarbon age of 3270 ± 80 (ISGS-563) from Horseshoe 
Lake clay plug sediments (30 foot depth) and from archeological constraints of Middle 
Woodland settlements on point bar complexes. An age of 8340 ± 250 (W-317) was noted 
by Willman and Frye (1970) on wood at 60 to 65 foot depth below left bank ridges and 
swales of Horseshoe Lake but its significance is not yet understood. 

Soil profiles in the American Bottoms are relatively weakly developed because soil 
formation has occurred over a relatively short period. In addition, drainage classes are 
generally poor so B horizon soil development by translocation is inhibited.

Extensive areas of the American Bottoms have been significantly altered by human activ-
ity, from amerindian civilization to present. Urban areas including Monk’s Mound, other 
archeological sites, and highway interchanges have received more than 5 feet of fill. Tex-
ture is variable from silt and sand to rubble, and most likely is derived from local sources. 

Material Resources / Environmental Hazards

Sand and Gravel  
Sand deposits, containing some gravel, as much as 125 feet thick (cross-section D–D9), 
lie predominantly below the water table in the Mississippi Valley and are a potential 
source of construction materials. Dredging operations for sand from the Henry Formation 
occurs in the eastern portion of the adjacent Monk’s Mound quadrangle. The upper sand 
is relatively fine-grained and is primarily used for fill and for golf courses, but coarser, 
cleaner sand below 50 feet depth is usable by the construction industry (Goldman 1994).  
Some lignite in the gravel can be a problem for construction materials. On the Granite 
City quadrangle, the Henry Formation is relatively coarse, but is buried by extensive 
though relatively thin clayey facies of the Cahokia Formation. As well, urbanized land 
over more than half of the quadrangle could make extraction operations difficult.

Groundwater  
Underlying the floodplain of the American Bottoms, thick, extensive sand and gravels of 
the Henry Formation are capable of yielding large quantities of groundwater (see cross-
sections and Bergstrom and Walker 1956). The Cahokia Formation has limited groundwa-
ter potential because of the finer and discontinuous nature of sand bodies; however, small 
supplies are readily available (Bergstrom and Walker 1956). The potential for groundwa-
ter contamination is generally high in the floodplain because of the interconnectivity of 
the sand and gravel bodies and the discontinuous covering of silt and clay up to 40 feet 
thick. 

Soil Erosion and Siltation  
A heavy load of sediment is supplied to creeks draining the eastern bluffs (fig. 1) because 
friable loessal soils with low shear resistance are readily eroded by running water. Fur-
thermore, the erosion of silt from uplands and siltation in bottomlands is thought to have 
been accelerated in historical times because of the onset of farming, construction, and 
deforestation in upland areas. Channelization has cut off alluvial fans below the bluffs 
where the streams would naturally deposit much of the sediment. Instead, the sediment is 
transported through channelized ditches to the American Bottom floodplain, and depos-
ited rapidly in bottomland wetlands, lakes, and the ditches themselves. There are only a 
few active creeks in the Granite City Quadrangle, but the Cahokia canal requires periodic 
dredging to maintain its depth. The amount of siltation across the American Bottom can 
be appreciated by comparing much greater areas of open water on old topographic maps 
to the same areas more recent maps.

Mapping Techniques

Surficial Geology Map  
This surficial geologic map is based in part upon soil series parent materials compiled 
from the Madison County and St. Clair County soil surveys (Goddard and Sabata 1982, 
Wallace 1978), but was modified based upon data obtained from field observations, drill 
cores obtained for this STATEMAP project, Illinois Department of Transportation (IDOT) 
borings, other engineering borings, and water well logs.

Cross Sections  
The cross-sections portray the near-surface deposits as would be seen in a slice through 
the earth down to bedrock. The locations of the cross section lines are shown as thick 
black lines on the surficial map. 

Data used for subsurface unit contacts (in approximate order of quality) are from studied 
outcrops, field descriptions of previous geologists (e.g., McKay 1977, 1979), stratigraphic 
test holes, engineering boring records (primarily IDOT), water well records, and coal test 
hole borings. Although the majority of data records are on the cross section lines, selected 
data points were projected from up to 1000 feet to the cross-section line. The projected 
data, indicated as dashed vertical lines on the cross-sections, were transferred to a point 
of similar elevation and similar geomorphology. Geologic unit contacts are dashed where 
the quality of sediment descriptions was less reliable or less detailed, particularly for 
some water wells and coal test borings.

All data shown in the cross-sections, with the exception of outcrop descriptions, are on 
file at the ISGS Geologic Record Unit and on the ISGS web site (www.isgs.uiuc.edu). 
Descriptions and interpretations of all data used in the cross-sections, including outcrops, 
can be obtained from the author.
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