

Base map compiled by Illinois State Geological Survey from digital data (2019 US Topo) provided by the United States Geological Survey. Shaded relief derived from lidar elevation data from Cook (2017) and Will (2021) county collections provided through ILHMP and the USGS 3DEP (2017) collection.

North American Datum of 1983 (NAD 83) Projection: Transverse Mercator 1,000-meter ticks: Universal Transverse Mercator grid system, zone 16

Recommended citation:

Curry, B.B., and A.C. Phillips, N. Healy, A.R. Bruegger, D.M. Lund, and O. Caron, 2022, Surficial geology of Dyer Quadrangle, Cook and Will Counties, Illinois and Lake County, Indiana: Illinois State Geological Survey, USGS-STATEMAP contract report, STATEMAP Dyer-SG, 3 sheets, 1:24,000.

				SC	ALE 1:24,	000				
1		1/2			0					1 MILE
	1000	0	1000	2000	3000	4000	5000	6000	7000 FEET	
		1	.5		0				ILOMETER	

BASE MAP CONTOUR INTERVAL 10 FEET NATIONAL GEODETIC VERTICAL DATUM OF 1988

© 2022 University of Illinois Board of Trustees. All rights reserved. For permission information contact the Illinois State Geological Survey.

Geology based on field work by B. Curry, 2011–2022; A. Bruegger, 2015–2016; O. Caron (2011-2015), N. Healy, 2022; and S. Dendy, 2022

Digital cartography by Katie Mandera, Deette Lund, and Emily Bunse, Illinois State Geological Survey.

This geologic map was funded in part by the USGS National Cooperative Geologic Map-ping Program under StateMap award number G21AC10861, 2021. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

This map has not undergone the formal Illinois Geologic Quadrangle map review process. Whether or when this map will be formally reviewed and published depends on the resources and priorities of the ISGS.

The Illinois State Geological Survey and the University of Illinois make no guarantee, expressed or implied, regarding the correctness of the interpretations presented in this document and accept no liability for the consequences of decisions made by others on the basis of the information presented here. The geologic interpretations are based on data that may vary with respect to the accuracy of geographic location, the type and quantity of data available at each location, and the scientific and technical qualifications of the data sources. Maps or cross sections in this document are not meant to be enlarged.

I ILLINOIS

Illinois State Geological Survey

Prairie Research Institute Illinois State Geological Survey 615 East Peabody Drive Champaign, Illinois 61820-6918 (217) 244-2414 http://www.isgs.illinois.edu

STATEMAP Dyer-SG Sheet 1 of 3

Chicago Chicag

Figure 1 Location of the Dyer Quadrangle in northeastern Illinois and northwestern Indiana. Major landscape elements are indicated including the valley of Plum Creek, and the approximate locations of the crests of the Tinley Moraine and Westmont Moraine (of the Valparaiso Morainic System).

Introduction

The Dyer Quadrangle covers parts of three counties across Indiana and Illinois, including Lake County (IN) and Cook and Will counties (IL). The largest city is Dyer, Indiana, with a population in 2020 of 15,900 people. Other communities on the quadrangle include Sauk Village, Steger, and Crete, Illinois, with populations of 10,390, 9,290, and 8,060, respectively. The most prominent landforms include the valley of Plum Creek (which sports several forest preserves run by the Forest Preserves of Cook and Will counties), the Tinley Moraine, and Westmont Moraine of the Valparaiso Morainic System (Fig. 1). A subdued feature is the Glenwood lagoon, a backwater region of Glacial Lake Chicago behind its highest and oldest beach ridges that formed during its inception during the Glenwood Phase (The Glenwood and Dyer beaches).

Previous Investigations

The northern part of the Dyer Quadrangle that is part of Cook County and adjacent Lake County in Indiana was mapped by J. Harlen Bretz (1939) as "Chicago Areal Geologic Map(s) no. 24", the last in the series. Much is revealed on this small sub-map, including the Tinley Moraine, Glenwood Shoreline, and oldest shorelines of Lake Chicago. Although Bretz contributed much to the understanding of the geology of the area, it is unfortunate his Bulletin 65 on the geology of the Chicago region was released as Part I in 1939 and Part II in 1955. In the time between these publication dates, Bretz also published influential journal articles on lake levels and lake history; this period was an especially fertile time in the advancement of concepts of isostasy and revision of the elevation and timing of overflow sills.

Bretz described interesting exposures along Plum Creek in 1955 that were the result of headward erosion caused by the construction of Hart Ditch across the Glenwood Phase Dyer Beach, including accounts of deer antler and mammoth tooth fossils in context with deposits of marl and fossiliferous lake sediment attributed to Lake Chicago. Prior to the ditching, Plum Creek flowed into a swamp

formed between behind the Dyer Beach and Tinley Moraine. Drainage eventually exited where Calumet Beach had been overtopped and eroded in the Village of Glenwood (on the Calumet City Quadrangle; Curry et al. 2021). With the new ditch in place, headward erosion resulted in the stream cuts photographed and sketched by Bretz (1955). Today, the soft material is susceptible to slumping and is overgrown in most places. A few excellent exposures are revealed from time to time (Figs. 2, 3 and 4).

Bretz's narrative led us to this area in hopes of elucidating the ice-age history through radiocarbon dating. Bruegger (2016) explored the Forest Preserve of Plum Creek (Cook County) by taking several shallow cores with the ISGS PowerProbe and sampling a cut bank (Figure 4). Our field research reexplored many of the cut banks along Plum Creek. Table 1 [sheet 3] lists radiocarbon ages resulting from this and other research in the region pertaining to the level of Lake Michigan and its precursor, Lake Chicago.

Landscape Sediment Assemblages

The landscape of the Dyer Quadrangle is characterized by a gently rolling till upland cut by a network of linear valley segments with a dominant grain of about 30°. The valleys have flat bottoms from a few tens of feet to more than one mile across. The till upland ends abruptly on the northern side of the quadrangle where it was truncated by Glacial Lake Chicago. Short sand-capped ridges demarcate ancient beaches named the Glenwood and Dyer beaches by Bretz (1939). Upslope of those beach ridges, the Glenwood lagoon extends up lower Plum Creek, the major drainage of the map area.

The northern edge of the till upland on the Dyer Quadrangle is formed by the Tinley Moraine. The crest of the moraine is subdued, but visible on detailed hillshade maps of LiDAR data (Fig. 1; Caron and Curry 2016). The Valparaiso Morainic Complex forms the remainder of the till upland. Only the crest of the Westmont Moraine is mappable as it crosses the southwestern part of the map. Its southern boundary is demarcated by an east-to-west linear segment of Trim Creek which issues from the basin of Eagle Lake, a large hydrologically open depression (Curry et al. 2018) that occurs on the Beecher East

Major Geologic Units

The Yorkville Member of the Lemont Formation is found deep in the subsurface, and its characteristics were documented in our five exploratory stratigraphic borings. The natural gamma-ray logs indicate that the unit is sedimentologically complex, including layers fine-grained lake sediment, poorly-sorted gravelly sand, and silty diamicton. Its physical, mineralogical, and chemical character is nearly identical to the Wadsworth Formation (Table 2 [sheet 3]). We interpret the complex array of sediment types to deposition related to the advancing and overriding Lake Michigan lobe in proglacial and subglacial environments.

The Beverly Tongue of the Henry Formation also occurs only in the subsurface, but is the thickest and most widespread unit in the subsurface of the Dyer Quadrangle. The unit is composed of sand with occasional beds of gravelly sand, and laminated silt loam. The coarser, poorly sorted facies of this unit allows differentiation with the finer-grained littoral Dolton facies of the Henry Formation.

The Wadsworth Formation is composed of chiefly matrix-supported diamicton with silt loam texture. The gravelly clasts are composed chiefly of local dolomite and shale. In many places, the diamicton is vaguely to strongly stratified imparted by contrasting grainsize, namely subtle changes among laminae to thin beds of silt, silt loam, and silty clay loam, with less frequent beds of very fine, fine, to medium sand. This fabric has allowed rapid oxidation of the entirety of the unit to depths of about 20 feet, and along subvertical joints and discontinuities to depths of more than 40 feet. Heterogenous sediment character of this type are reflected by the variability of the natural gamma-ray logs and is observed to be thickest and most more prevalent near the base of the unit.

Surficial deposits of lake sediment (Equality Formation) and alluvium (Cahokia Formation) are less than 10 feet thick. Due to their lithologic variability and weathered condition, they were not examined in detail in this investigation. Both units include beds of soft, weathered sand and gravelly sand that readily slump along creeks.

Regional Correlation

All stratigraphic units names change across the state line between Illinois and Indiana (Table 3 [sheet 3]), but there is likely little significant change in their lithology or age. Natural gamma-ray and lithologic logs from water well drillers were utilized to correlate units across state lines. We do not expect that the physical properties will change mark-edly going from west to east, but there may be subtle changes in the ratio of shale-to-dolomite clast content as younger, shalier Devonian units become more prevalent in the subsurface heading eastward.

Interpretation of Radiocarbon Ages

Twenty radiocarbon ages have been determined from samples coming from the Dyer Quadrangle (Table 1 [sheet 3]). These ages have been may be divided into the diachronic Glenwood Phase I (17.2 - 16.5 cal ka), Crown Point Phase (17.2 - 16.9 cal ka), Glenwood II (16.1 - 14.2 cal ka), Chippewa Low (9.7 - 9.1 cal ka), and post-Nipissing (2.8 cal ka). The proximity of post-glacial and lacustrine environments during the earliest deglaciation has resulted in overlapping age ranges of the Crown Point and Glenwood phases.

References

- Bretz, J.H., 1939, Geology of the Chicago Region Part I General. Illinois State Geological Survey Bulletin 65, 118. p., with 24 1:24,000 geologic maps.
- Bretz, J.H., 1955, Geology of the Chicago Region Part II The Pleistocene. Illinois State Geological Survey Bulletin 65, 132 p.
- Brown, S.E. and Thompson, T.A., 2005, Geologic map of glacial and postglacial deposits, northern Lake County, Indiana (scale 1: 40,000). Miscellaneous Map, 71.
- Bruegger, A.R., 2016, Refining the Span and Rates and Deposition of the Glenwood Phase of Lake Chicago [unpublished M.Sc. thesis]: Urbana, Illinois, University of Illinois at Urbana-Champaign, 61 p.
- Caron, O.J., and Curry, B.B., 2016, The Quaternary geology of the southern Chicago Metropolitan Area: The Chicago Outlet, morainic systems, glacial chronology, and

Figure 2 Outcrops of the Equality Formation along Plum Creek (outcrop, no. 51935 on map) showing a dark buried soil sandwiched by fossiliferous lacustrine sediment above and below. The soil includes fossils of wood, seeds, and charcoal that collectively date between 9,060 to 9,750 calibrated years (Table 1, [sheet 3]). The tape measure is approximately 3 feet long. 7.5-minute Quadrangle to the south of the Dyer Quadrangle (Fig.1).

The till upland is formed of 30 to 50 feet of the Wadsworth Formation. Composed of gray silt loam to silty clay loam diamicton, the moisture content varies from 15 to 17%. In detail, the unit typically has layers from 5 to 10 feet thick or more with uniform diamicton intercalated with thin beds to seams of sand or sand and gravel. In most places the diamicton is uniform, but it may be vaguely stratified in places. In some areas, the uppermost eight feet or so is laminated, with evidence of layering heightened by preferential oxidation of relatively coarser material, typically very fine sand or silt. Wet sieving ten samples of this material recovered no fossils.

Logs of structural borings done for highway departments reveal complex valley fills that include lacustrine sediment and peat. The largest feature of this sort in the region, Eagle Lake, was explored by several borings that reveal more than 60 feet of fossiliferous material dating from about 16,000 calibrated years to the present (Curry et al., 2018). The large peat bogs on the Dyer Quadrangle are genetically related to the Eagle Lake fill but are not likely as thick; our borings, taken on the margins of the bogs, suggest a thickness of no more than 30 feet.

Narrower stretches of the valleys have been ditched, and in most places where there are structural borings, reveal at least 10 feet of sorted sediment that we have mapped as the Equality Formation. In most areas, the soils maps indicate valley bottoms and sides have parent materials of till, indicating lateral erosion (planation) by streams, with material transported along and out of the valleys. The combination of strath (erosional) and aggradation (lake deposits) elements point to a polygenetic terrace origin.

Terraces along Plum Creek are fascinatingly complex, and include facies of the Equality Formation: wood, larch cone, and ostracode-bearing silt (Caron and Curry, 2016) as well as snail-shell, wood, and ostracodebearing silt loam diamicton. These fossiliferous units pinch out laterally leaving patches of barren diamicton of the Wadsworth Formation. We have mapped these areas as all Equality Formation but recognize the patchy occurrence of windows of Wadsworth Formation at ground surface. Due to lowering of base level of lower Plum Creek by the Hart Ditch across the Glenwood shorelines, surfaces that were once frequently inundated by flooding have been modified by creation of small mounds and fewer sub-linear basins. Most of these are too small to show at our scale of 1:24,000, but they are common in some parks.

Bedrock Topography

The ANUDEM routine, v. 5.3 (see Hutchinson 2011), implemented as Topo to Raster in ArcGIS v. 10.8.1 was used on a subset of about 330 records to generate bedrock surface map (Figure 5). Contours were smoothed and adjusted to honor the data. The surface may be characterized as upland dissected by a valley that deepens to the north and east. Relief of the buried bedrock is about 180 feet, ranging from about 495 to 675 feet above sea level.

- Chrzastowski, M.J., Pranschke, F.A. and Shabica, C.W., 1991. Discovery and preliminary investigations of the remains of an early Holocene forest on the floor of southern Lake Michigan. Journal of Great Lakes Research, 17(4), pp.543-552.
- Curry, B.B., Bruegger, A.R., and Conroy, J.L., 2018a, Highstands and overflow history of glacial Lake Chicago and downstream impacts on Gulf of Mexico δ18O values, Geology 46: 667-670, doi.org/10.1130/G40170.1

Curry, B.B., Lowell, T.V., Wang, H., and Anderson, A.C., 2018b, Revised time-distance diagram for the Lake Michigan Lobe, Michigan Subepisode, Wisconsin Episode, Illinois, USA, in Kehew, A.E., and Curry, B.B., eds., Quaternary Glaciation of the Great Lakes Region: Process, Landforms, Sediments, and Chronology: Geological Society of America Special Paper 530, p. 69–101, doi:10.1130/2018.2530(04)

Curry, B. and Petras, J., 2011, Chronological framework for the deglaciation of the Lake Michigan lobe of the Laurentide Ice Sheet from ice-walled lake deposits, Journal of Quaternary Science: 26(4) 402–410. DOI: 10.1002/jqs.1466

Curry, B.B., Caron, O.J., and Thomason, J., 2018, The Quaternary geology of the southern Chicago metropolitan area: The Chicago outlet, morainic systems, glacial chronology, and Kankakee Torrent, in Florea, L.J., ed., Ancient Oceans, Orogenic Uplifts, and Glacial Ice: Geologic Crossroads in America's Heartland: Geological Society of America Field Guide 51, p. 237–244, https://doi.org/10.1130/2018.0051(10).

Curry, B.B., A.C. Phillips, W.R. Lenihan, and E.N.G. Huggett, 2021, Surficial geology of Calumet City Quadrangle, Cook County, Illinois and Lake County, Indiana: Illinois State Geological Survey, USGS-STATEMAP contract report, STATEMAP Calumet City-SG, 2 sheets, 1:24,000.

- Gray, Henry H., 1990, "New Quaternary geologic map of Indiana an introduction, Proceedings of the Indiana Academy of Science, vol. 99, no. 1, pp. 47-52.
- Hansel, A.K. and Johnson, W.H., 1996, Wedron and Mason Groups: Lithostratigraphic reclassification of deposits of the Wisconsin Episode, Lake Michigan lobe area. Bulletin no. 104.

Hansel, A.K., and Mickelson, D.M., 1988, A reevaluation of the timing and causes of high lake phases in the Lake Michigan basin: Quaternary Research, v. 29, p. 113–128, https://doi.org/10.1016/0033-5894(88)90055-5.

- Monaghan, G.W., and Hansel, A.K., 1990, Evidence for the intra-Glenwood (Mackinaw) low-water phase of glacial Lake Chicago: Canadian Journal of Earth Sciences, v. 27, p. 1236–1241, https://doi.org/10.1139/e90-131.
- Phillips, A.C., B.B. Curry, and A. Sanchez, 2021, Surficial geology of Blue Island Quadrangle, Cook County, Illinois: Illinois State Geological Survey, USGS-STATEMAP contract report, STATEMAP Blue Island-SG, 2 sheets, 1:24,000.

Wayne, W. J., 1963, Pleistocene formations of Indiana: Indiana Geol. Survey Bull. 25, 85 p. , 4 pls. , 8 figs. , 2 tables.

Fine sand

Figure 3 Outcrop of proglacial sand and silt associated with the Tinley Moraine exposed along Plum Creek (outcrop, no. 51937 on map) near the Cook and Will County boundary. Silt loam diamicton (till) of the Wadsworth Formation occurs above and below the sorted sediment. The tape measure is approximately 3 feet long in the lower photo. From Caron and Curry, 2016.

Figure 4 Outcrop of fossiliferous, laminated silt loam (lacustrine sediment of the Equality Formation) resting above silt loam diamicton (till of the Wadsworth Formation; outcrop no. 51925 on map). Fossils include ostracodes, gastropods, pelecypods, bryophytes (moss), and cones (larch). Wood and needles samples date at 16,580 and 15,600 calibrated years, respectively (Table 1, [sheet 3]). The glacial lake sediment and till are truncated and covered by alluvium of the Cahokia Formation.

Table 1 List of radiocarbon ages from samples recently assayed from the southwestern Lake Michigan coastline and environs.

Lab	Number	API	County	State	Ouadrangle	Boring ID, depth (ft)	Material assayed	Latitude	Longitude	¹⁴ C yr B.P.	±	δ13C (‰)	Source(s)	cal vr BP	sig-1 min	sig-1 max	Intercepts	5 Lithostratigraphy
UCIAMS	252689	120315179000	Cook	II.	Blue Island	BLI P11, 10,5-11,0	rootlets	41,726648	-87.687393	1.695	15	-24.2	unpublished	1580	1540	1680	2	Equality Fm
UCIAMS	266806	120315193400	Cook	IL	Dver	PC-22c (core). 3.0	charcoal	41.489144	-87.525991	2.660	15	-27.1	unpublished	2760	2750	2770	1	Equality Fm
ISGS	A4295	121974608500	Will	П.	Beecher East	BEEC 17-7 Bultema Farm 18-20	sedge	41 358473	-87 543836	2,975	20	-11.6	Curry et al 2018 a b	3150	3030	3210	4	Equality Fm
ISGS	A4218	121974608500	Will	П	Beecher East	BEEC 17-7 Bultema Farm 92-96	sedge	41 358473	-87 543836	3 180	20	ND	Curry et al. 2018 a, b	3410	3380	3450	2	Equality Fm
LICIAMS	252675	120315177300	Cook	П	Calumet City	CC-21-05_14.5	Pleurocera shells	41 593564	-87 549307	3 650	15	-8.7	unpublished	3970	3920	4060	3	Equality Fm
UCIAMS	252676	120315177300	Cook	II.	Calumet City	CC-21-05, 14.5	Pleurocera shells	41 593564	-87 549307	3 775	15	-8.4	unpublished	4140	4090	4220	3	Equality Fm
UCIAMS	256914	120314884800	Cook		Lake Calumet	CALU-18-03 6 5-6 7	Pleurocera shells	41 62612	-87 559538	4 045	15	0.1	unpublished	4480	4450	4570	3	Equality Fm
ISGS	A4217	121974608500	Will	II	Beecher Fast	BEEC 17-7 Bultema Farm 291-295	sedge	41 358473	-87 543836	4 765	20	ND	Curry et al 2018 a b	5530	5580	5480	3	Equality Fm
LICIAMS	142914	120313649300	Cook		Palos Park	MVCC-2 61	bulrush seeds	41 692813	-87 843168	5 1 5 0	20	ND	unpublished	5920	5900	5930	1	Equality Fm
UCIAMS	256890	120314884800	Cook	II	Lake Calumet	CALUL18-03 6 15-6 25	insect nest	41 62612	-87 559538	5,170	45	ND	unpublished	5930	5900	5990	2	Equality Fm
UCIAMS	256806	120313640500	Cook		Palos Park	MVCC-3 120	hulrush seeds	41.6002012	-87.842769	5 200	т.) 15	_25.4	unpublished	5060	5030	5000	2	Equality Em
UCIAMS	1/2013	120313649200	Cook		Palos Park	MVCC 1 260 263	wood	41.690/22	87 844878	5,200	20		unpublished	5070	5940	6000	2	Equality Fm
UCIAMS	142915	120313649300	Cook		Palos Park	MVCC-2 62	hulrush seeds	41 692813	-87 843168	5 480	20	ND	unpublished	6290	6280	6 3 00	1	Equality Fm
UCIAMS	142912	120313649200	Cook		Palos Park	MVCC_1 24 6-24 9	wood	41 680428	-87 844878	5,505	25	ND	unpublished	6300	6280	6310	1	Equality Em
UCIAMS	142016	120313649200	Cook		Palos Park	MVCC 2 62	wood	41.602813	-87.843168	5,505	20		unpublished	6300	6320	6440	3	Equality Fm
ISGS	Δ4375	121974608500	Will		Reecher Fast	BEEC 17-7 38 5-39 0	sedge	41.092813	-87.543108	5,650	20		Curry et al 2018 a b	6430	6400	6480	2	Equality Em
LICIAMS	256807	120313640500	Cook		Palos Park	MVCC 3 12 5 13 0	insect nest: sedge	41.600205	87 842769	5,880	15	26.6	uppublished	6700	6670	6730	2	Equality Fm
UCIAMS	256805	120313640200	Cook		Dalos Dark	MVCC 1, 25,0,25,2	wood	11.690/22	87.842702	5.035	15	-20.0	unpublished	6760	6740	6700	2	Equality Fm
ISGS	A/376	121974608500	Will		Reecher Fast	BEEC 17 7 43 5 44 0	sedae	41.009420	87 5/3836	7.960	30	-20.3	Curry et al. 2018 a. b.	8840	8660	8080	7	Equality Fm
UCIAMS	266803	120315103500	Cook		Duer	PC 22 (outerop) = 8.0.9.0	macros	A1 480264	87 525001	8 1 25	20	28.6	uppublished	0040	0010	0200	γ 2	Equality Fm
UCIAMS	266804	120315193500	Cook		Dyer	PC - 22 (outerop), 8.0-9.0	charcoal	41.489204	87 525991	8 220	20	-20.0	unpublished	9000	0130	0270	2	Equality Fm
ISCS	200804	120313193300	Cook		Dyci	Olgan Forast had	urood (ach)	41.409204	-07.525991	8,230	20 70	-23.0	Chrzestowski at al. 1001	02200	0150	9210	3	Equality Fm
1905	2095	none	Cook		none	Olsen Forest bed	wood (ash)	41.017	-07.3	8,320	70		Chrzestowski et al. 1991	9320	9150	9430	2	Equality Fm
LICIANS	2090	120215102500	Cook		Duar	DC 22 (autorop) 8.0.0.0	light wood	41.017	-07.3	8,320	80	NTD	unpublished	9320	9150	9430	2	Equality Fm
UCIAINIS	200802	120313193300	Cook		Lalta Calumat	CALLER 02 6 25	ngni woou	41.409204	-07.523991	0,740	0U 25	26.0	unpublished	10200	10100	10220		Equality Fin
UCIAINS	240703 A 4274	120314664600	Will		Daachar East	DEEC 17 7 48 5 40 0	neeules	41.02012	-07.339330	0,993	40	-20.0	Curry et al. 2018 a. h	10200	10180	10220	5	Equality Fm
LICIANG	A4374	121974008300	W III C = =1=		Delecher East	MVCC 2 herel meril	seuge	41.338473	-87.343830	9,020	40 20		Curry et al. 2018 a, b	11210	110610	11130	<u>່</u>	
UCIAMS	142917	120313049300	Cook		Palos Park		wood	41.092813	-87.843108	9,915	30	ND 26.9	unpublished	10710	11230	11390	2	Equality Fm
UCIANS	240701	120313177000	Cook		Calumet City	CC-21-02, 10.0	neeules	41.304000	-07.333710	11,075	23	-20.0	unpublished	12/10	12090	12720	1	Equality Fin
UCIANS	232083	120313177000	Cook		Calumet City	CC-21-02, 10.0	seeds, bullush	41.304000	-07.333710	11,030	23	-23.1		12970	1290	13030	2	
UCIAMS	230893	120313177000	UOOK WUII		Daaahar East	DEEC 17 7 52 8 52 0	moss	41.304000	-07.333710	11,130	25	-31.2	Charge et al. 2018 a. h	12250	12100	12200	2	Equality Fm
ISUS	A4219	121974008500	W III		Beecher East	BEEC 17-7, 52.8-53.0	needles, macros	41.338473	-87.343830	11,370	33	ND 26.4		13230	13190	13300	2	Equality Fm
UCIAMS	248760	120315177000	Cook		Calumet City	CC-21-02, 10.0	wood	41.564066	-87.533718	11,430	25	-26.4		13300	13250	13330	2	Equality Fm
UCIAMS	236892	120315177000	Соок		Calumet City	CC-21-02, 10.0	Cones	41.564066	-87.533718	11,480	25	-20.3		13360	13310	13410	2	Equality Fm
UCIAMS	248762	120315177000	Cook		Calumet City	CC-21-02, 10.0	<i>Naja</i> seeds (aquatic)	41.564066	-87.533718	11,495	25	-16.0		13370	13320	13410	2	Equality Fm
UCIAMS	252684	120315177000	COOK			DEEC 17 7 54 0 54 5	charcoal	41.364066	-87.533718	11,765	30	-24.2	unpublished	13010	13520	13/40	4	Equality Fm
ISGS	A4297	121974608500	W 111		Beecher East	BEEC 17-7, 54.0-54.5	needles	41.358473	-87.543836	12,225	40	-23.6	Curry et al. 2018 a, b	14130	14070	14170	1	Equality Fm
UCIAMS	200805	120315193500	Cook		Dyer	PC-22 (outcrop), 9.0-10.0	wood, macros	41.489204	-87.525991	12,330	00	ND 29.1		14350	14150	14790	2	Equality Fm
UCIAMS	252686	120315179000	Cook		Blue Island	BLI PI I, 4.0-4.2	needles	41.726648	-87.087393	12,535	30	-28.1		14900	14640	15000	2	Equality Fm
UCIAMS	252687	120315179000	Cook		Blue Island	BLI PI1, 9.8-10.0	needles	41.726648	-87.687393	12,560	35	-28.0		14950	14870	15050	1	Equality Fm
UCIAMS	200813	120315193500	COOK		Dyer	PC-22 (outcrop), 9.0-10.0	snell	41.489264	-87.526203	12,610	20	-5.9		15030	14980	15090	1	Equality Fm
UCIAMS	252688	120315179000	Cook		Blue Island	BLI PI I, 10.0-10.2	WOOD	41.726648	-87.687393	12,705	30	-29.6	unpublished	15150	15090	15220	1	Equality Fm
UCIAMS	159243	120315192500	Cook		Dyer	DYER 2, 0.7-1.4	needle	41.478459	-87.532544	13,065	45		Bruegger 2016	15660	15590	15740	1	Equality Fm
UCIAMS	159241	120315192900	Cook		Dyer	PC-5, 5.45-5.65	needle	41.493094	-87.541728	13,150	45	ND	Bruegger 2016	15770	15690	15850	1	Equality Fm
UCIAMS	159244	120315192500	Cook		Dyer	DYER 2, 3.0-3.1	needle	41.478459	-87.532544	13,355	50	ND	Bruegger 2016	16070	15980	16170	1	Equality Fm
ISGS	1378	none	377'11			outcrop	Wood	41.050.470	07.540004	13,470	130		Monaghan and Hansel 1990	16230	16020	16420	1	Equality Fm
ISGS	A4216	121974608500	Will Q 1		Beecher East	BEEC 17-7, 59.7-59.9	Dryas leaves, stems	41.358473	-87.543836	13,500	35	-26.2	Curry et al. 2018 a, b	16280	16210	16340	1	Equality Fm
UCIAMS	159242	120315192900	Cook		Dyer	PC-5, 6.55-6.75	needle	41.493094	-87.541728	13,675	45	ND	Bruegger 2016	16530	16430	16610	1	Equality Fm
ISGS	1/08/	120315192500	Cook		Dyer	Dyer 2, 3.2-3.25	Wood	41.476658	-87.533155	13,700	80	-24.6	Bruegger 2016	16580	16410	16/10	1	Equality Fm
UCIAMS	159238	120315192800	Cook		Dyer	PC-4, 9.3-9.5	needle	41.490438	-87.534164	13,790	50	ND	unpublished	16730	16570	17060	1	Equality Fm
ISGS	1549	120312729000	Cook		Dyer	Lynwood Reservoir, 15.0	cones	41.504167	-87.541667	13,870	170	-24.8	Hansel and Mickelson 1988	16820	16570	17060	1	Dolton facies, Henry Fm
UCIAMS	63076	none	Lake		Wadsworth	Wadsworth Village Hall, 16.5	Dryas leaves, stems	42.427882	-87.907156	13,910	35	ND	Curry and Petras 2011	16930	16870	17020	1	Equality Fm
UCIAMS	159240	120315192800	Cook		Dyer	PC-4, 13.0-13.6	rootlets	41.490438	-87.534164	14,050	45	-26.4	Bruegger 2016	17090	17010	17250	2	Equality Fm
UCIAMS	159235	120315192700	Cook		Dyer	PC-2, 12.0-12.4	rootlets	41.490438	-87.534164	14,075	50	-25.7	Bruegger 2016	17140	17040	17280	2	Equality Fm
UCIAMS	159237	120315192700	Cook		Dyer	PC-2, 12.0-12.8	rootlets	41.490438	-87.534164	14,085	45	-25.6	Bruegger 2016	17160	17050	17280	2	Equality Fm
ISGS	1570	120312729000	Cook		Dyer	Lynwood Reservoir, 15.0	driftwood	41.504167	-87.541667	14,100	640	-25.8	Hansel and Mickelson 1988	17080	16290	18020	1	Dolton facies, Henry Fm
UCIAMS	159236	120315192700	Cook		Dyer	PC-2, 12.4-12.8	rootlets	41.490438	-87.534164	14,115	50	-25.8	Bruegger 2016	17190	17280	17080	2	Equality Fm
UCIAMS	159239	120315192800	Cook	IL	Dyer	PC-4, 9.8-10.4	needle	41.490438	-87.534164	14,140	50	-26.8	Bruegger 2016	17200	17100	17280	1	Equality Fm

UCIAMS 256889	120314884800	Cook	IL	Lake Calumet	CALU-18-03, 6.5-6.7	wood	41.62612	-87.559538	41,200	1900	-28.1	unpublished	44290	42790	45440	1	Equality Fm
UCIAMS 256891	120315177000	Cook	IL	Calumet City	CC-21-02, 10.0	coal	41.564066	-87.533718	>51,700	ND	-24.4	unpublished	ND	ND	ND	ND	Equality Fm

unpublished citations by quadrangle: Dyer (Curry et al. 2022[this map]); Blue Island (Phillips et al. 2021); Calumet City (Curry et al. 2021), Lake Calumet (in progress); Beecher East [Eagle Lake core] (Curry et al. 2018 a,b); Palos Park (Caron and Curry 2016) = important legacy ages

Table 2 Summary of physical, mineralogical, and chemical data per stratigraphic unit.

	_		X-1	ray diffr	raction of o	riented sl	ides (< 2	um fractio	n)							Particl	e Size Distribution				
Stratigraphic unit		Denth (ft)	Clay Mineralogy (%)				Coun	Count per second (CPS)			1978) colo	or spectro	scopy	total sample		< 2 mm f	raction	dia	ım)	Moisture	
			smectite	illite	kaolinite	chlorite	calcite	dolomite	Total	L	a*	b*	Μ	% gravel	% sand	% silt	% clay (<2μm)	Dx 10	Dx 50	Dx 90	Content
Wadsworth	average	27.5	2.4%	75.0%	5.8%	16.8%	104	194	778	66.4	2.5	12.4	0.4	4.0	16.7	66.7	16.6	1.6	16.3	119.5	15.2
Formation	std dev	14.8	1.4%	4.0%	1.5%	3.9%	58	90	192	1.9	1.4	4.2	0.1	9.6	14.1	10.4	4.9	1.4	38.9	104.6	2.1
	count	45	36	36	36	36	27	27	27	27	27	27	27	46	46	46	46	46	46	46	37
Henry Formation,	average	97.1	2.1%	73.3%	7.7%	16.9%	94	168	939	67.6	0.9	9.1	0.3	7.0	61.2	33.7	5.1	29.6	122.1	265.0	10.5
Beverly Tongue	std dev	23.0	1.2%	7.0%	2.3%	5.9%	61	89	746	7.7	1.7	2.0	0.1	18.8	34.0	28.9	6.1	32.8	87.5	242.6	0.3
	count	8(16)	8	8	8	8	16	16	16	16	16	16	16	40	40	40	40	40	40	40	4
Yorkville Member,	average	115.9	1.8%	71.6%	7.1%	19.4%	94	254	612	65.4	1.3	8.7	0.3	6.4	7.9	75.0	17.1	1.3	7.6	46.2	ND
Lemont Formation	std dev	16.2	0.4%	3.9%	1.0%	3.6%	39	120	202	2.7	0.1	1.1	0.0	12.9	3.1	4.7	4.9	0.3	2.5	26.3	ND
	count	7	7	7	7	7	5	5	5	5	5	5	5	6	6	6	6	6	6	6	ND

Stuationanhia unit						Oxides	(mass pe	er cent)					Elements (mg/kg or ppm)															
Stratigraphic unit		Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P_2O_5	SO ₃	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃	Cl	V	Cr	Ni	Cu	Zn	Ga	As	Br	Rb	Sr	Y	Nb	Ba	Pb	Th
Wadsworth	average	1.0	4.8	12.9	62.6	0.1	0.6	3.5	8.8	0.7	0.1	4.6	184.9	173.9	75.7	52.7	46.7	82.6	20.9	11.9	3.5	128.2	143.2	30.5	16.5	372.6	26.8	16.8
Formation	std dev	0.1	0.7	1.4	2.3	0.0	0.6	0.4	2.7	0.1	0.0	0.5	39.1	47.2	20.8	7.1	6.6	11.7	3.1	2.6	0.8	23.0	21.8	2.7	3.7	33.4	3.1	2.1
	count	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
Henry Formation,	average	1.1	3.9	9.8	68.1	0.1	1.1	2.8	8.9	0.5	0.1	3.4	229.3	106.4	106.6	39.8	36.9	66.0	16.8	9.9	3.8	98.3	167.1	27.5	15.5	354.9	22.8	14.6
Beverly Tongue	std dev	0.3	1.5	3.5	9.2	0.0	0.8	0.9	3.7	0.3	0.0	1.9	82.5	64.6	55.4	21.1	15.2	25.9	5.9	6.3	1.1	41.2	47.8	12.4	4.7	82.7	8.3	2.9
	count	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Yorkville Member,	average	0.9	5.2	12.7	60.0	0.1	1.4	3.6	10.1	0.8	0.1	5.1	182.2	148.0	72.4	61.2	50.2	88.0	21.2	15.3	4.1	133.9	154.2	32.3	16.8	353.0	29.7	18.0
Lemont Formation	std dev	0.1	0.8	1.7	2.0	0.0	0.7	0.5	2.9	0.1	0.0	0.6	47.4	33.4	17.1	5.1	4.3	5.6	3.7	2.2	0.7	31.1	8.5	2.2	3.9	40.0	3.7	2.1
	count	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5

ND = not determined Commission Internationale de l'Eclairage (CIE), 1978. Recommendations on Uniform Color Spaces, Color Difference and Psychometric Color Terms. Paris, CIE, Colorimetry, publication 15, supplement 2, 21 pp

Table 3 Comparison of the lithostratigraphic units used in this region, informal units mapped in northern Lake County, Indiana, and formal state-wide units in Indiana.

Illinois State Geological Survey lithostratigraphy (modified from Hansel and Johnson 1996)	Northern Lake County, Indiana (Brown and Thompson 2005)	Indiana Pleistocene stratigraphy (statewide; Wayne 1960)
Equality Formation, Lake Michigan Member		
Grayslake Peat Cahokia Formation	Toleston lagoon, Calumet lagoon, Glenwood spit platform and swales	Martinsville Formation
Henry Formation, Parkland facies (dune) Henry Formation, Dolton facies (nearshore)	Toleston strandplain, Toleston transgressive nearshore and fluvial, Calumet nearshore, Calumet dunes, Glenwood spit	Atherton Formation
Equality Formation		
Henry Formation, undivided		
Wadsworth Formation	fine-grained diamicton (a)	Lagro Formation (Wedron Formation of Gray, 1990)
Lemont Formation, Haeger Member	fine-grained diamicton (b)	
Henry Formation, Beverly Tongue	Proximal subaqueous fan	
Lemont Formation, Yorkville Member		

STATEMAP Dyer-SG Sheet 3 of 3